MICROBIAL TRANSFORMATIONS OF 6β-ACETOXYEUDESMENES BY CURVULARIA LUNATA

ANDRES GARCIA-GRANADOS,* ANTONIO MARTINEZ, FRANCISCO RIVAS,

Departamento de Química Orgánica

M. ESTHER ONORATO,

Análisis y Determinación de Estructuras, Servicios Técnicos

and JOSE M. ARIAS

Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

ABSTRACT.—Microbial transformation of 6β -acetoxyeudesmanols and 6β -acetoxyeudesmanones has been carried out with a *Curvularia lunata* strain. 6β -Acetoxyeudesm-3-en-1 β -ol [1] and 6β -acetoxyeudesm-4(15)-en-1 β -ol [2] remained unaltered after 7 days incubation. Incubation of 6β -acetoxyeudesm-3-en-1-one [3] and 6β -acetoxyeudesm-4(15)-en-1-one [4] resulted in 1 α -hydroxyl compounds as principal products, along with minor quantities of 4α - and 4β -hydroxyeudesm-2-en-1-one from 3 and 6β -acetoxyeudesm-4(15)-ene-1 α , 2α -diol from 4.

We are carrying out a series of systematic biotransformations of $\beta\beta$ -acetoxyeudesmanes (1) with hydroxylating fungi as part of a wide program of sesquiterpenoid (2) and diterpenoid (3–7) biotransformations. We have used *Curvularia lunata* (Dematiaceae) strain CECT 2130 to obtain $\beta\beta$ -eudesmanolides (1). *C. lunata* introduced a hydroxyl group into the isopropyl moiety of $\beta\beta$ -acetoxy-1 β , 4β -dihydroxyeudesmane, which can then be used to obtain $\beta\beta$ -eudesmanolides (1). Thus we have incubated a number of natural products isolated from *Sideritis* (8) and their oxidation derivatives at C-1 with *C. lunata* in order to discover the relationship between the structure of substrate and the biotransformation activity of the fungus. The sesquiterpene eudesmanes hydroxylated at C-1 can be transformed to other sesquiterpene skeletons such as guaianes, pseudoguaianes, and elemanes.

MATERIAL AND METHODS

PHYSICAL ANALYSES.—Measurements of nmr spectra (300 MHz ¹H and 75.47 MHz ¹³C) were made in CDCl₃ (which also provided the lock signal) in a Bruker AM-300 spectrometer, equipped with process controller and array processor. The assignments of ¹³C chemical shifts were made with the aid of distortionless enhancement by polarization transfer (DEPT) using a flip angle of 135°. Monodimensional nOe difference experiments were made by irradiation for 4 sec in series of 8 scans, on-resonance and off-resonance alternately. It spectra were recorded on a Nicolet 20SX FT-IR spectrometer. Eims (70 eV) was carried out with a Hewlett-Packard 5988A spectrometer. Elemental analyses were made in a Perkin-Elmer 240C analyzer. Optical rotations were measured on a Perkin-Elmer 241 polarimeter at 20°. Si gel Scharlau 60 (less than 0.06 mm) was used for flash chromatography. CH₂Cl₂ containing increasing amounts of Me₂CO was used as eluent. Analytical plates (Si gel, Merck G) were rendered visible by spraying with H₂SO₄, followed by heating to 120°.

ISOLATION OF EUDESMENES 1 AND 2.— 6β -Acetoxyeudesm-3-en-1 β -ol [1] and 6β -acetoxyeudesm-4(15)-en-1 β -ol [2] were isolated from *Sideritis varoi* ssp. *cuatrecasasii* (8).

OXIDATION OF EUDESMENES 1 AND 2.— 6β -Acetoxyeudesm-3-en-1 β -ol [1] (200 mg) was oxidized with pyridinium dichromate (9) (250 mg) for 12 h at room temperature. Chromatography on a Si gel column yielded 6β -acetoxyeudesm-3-en-1-one [3] (8) (120 mg, 60%). The 6β -acetoxyeudesm-4(15)-en-1 β -ol [2] (300 mg) was also oxidized with pyridinium dichromate (375 mg) under the same conditions. Chromatography on a Si gel column yielded 6β -acetoxyeudesm-4(15)-en-1-one [4] (8) (173 mg, 58%).

ORGANISM, MEDIA, AND CULTURE CONDITIONS.—*C. lunata* CECT 2130 came from the Colección Española de Cultivos Tipo, Departamento de Microbiología, Facultad de Ciencias, Universidad de Valencia, Spain, and was kept in YEPGA medium, containing yeast extract (1%), peptone (1%), glucose (2%), and agar (2%) in H_2O at pH 5. In all the transformation experiments a medium of peptone (0.1%), yeast

extract (0.1%), beef extract (0.1%), and glucose (0.5%) in H_2O at pH 5.7 was used. Erlenmeyer flasks (250 ml) containing 60 ml of medium were inoculated with a dense suspension of *C. lunata*. The cultures were incubated with shaking (150 rpm) at 28° for 6 days, after which substrates **1**, **2**, **3**, and **4** in EtOH were added.

BIOTRANSFORMATION OF SUBSTRATE 3.—Substrate 3 (120 mg) was dissolved in EtOH (2.5 ml), distributed among 5 Erlenmeyer-flask cultures, and incubated for 3 days, after which the cultures were filtered and pooled; the cells were washed with H_2O and the liquid was saturated with NaCl and extracted twice with CH_2Cl_2 . Both extracts were pooled, dried with anhydrous MgSO₄, and evaporated at 40° in vacuo to give a mixture of compounds (83 mg) (Scheme 1). This mixture was chromatographed on a Si gel column to obtain 34 mg of starting material 3, 25 mg of metabolite 5 (6β-acetoxyeudesm-3-en-1α-ol), 12 mg of metabolite 6 (6β-acetoxy-4α-hydroxyeudesm-2-en-1-one), and 12 mg of metabolite 7 (6β-acetoxy-4β-hydroxyeudesm-2-en-1-one).

6β-ACETOXYEUDESM-3-EN-1α-OL [**5**].—[α]D +70° (c = 1, CHCl₃); ir $\nu \max \operatorname{cm}^{-1}$ 3442, 1734, 1643, 1243; ¹H nmr (δ) 5.72 (1H, m, W½ = 7 Hz, H-6), 5.29 (1H, m, W½ = 10 Hz, H-3), 3.27 (1H, br d, J = 3.7 Hz, H-1), 2.29 (1H, m, W½ = 10 Hz, H-5), 2.00 (3H, s, AcO group), 1.69 (3H, br s, Me-15), 0.93 (3H, s, Me-14), 1.00 and 0.86 (3H each, d, J = 6.5 Hz, Me-12 and Me-13); ¹³C nmr see Table 1; m/z (%) [M]⁺ 280 (4), 220 (10), 205 (3), 202 (44), 187 (11), 159 (100), 145 (11), 131 (15). Found C 73.1, H 9.95; C₁₇H₂₈O₃ requires C 72.82, H 10.06%.

6β-ACETOXY-4α-HYDROXYEUDESM-2-EN-1-ONE [6].—[α]D +6° (c = 0.5, CHCl₃); ir ν max cm⁻¹ 3426, 1735, 1676, 1242; ¹H nmr (δ) 6.62 (1H, d, J = 10.5 Hz, H-3), 5.85 (1H, m, W $\frac{1}{2} = 4$ Hz, H-6), 5.80 (1H, d, J = 10.5 Hz, H-2), 2.08 (3H, s, AcO group), 1.38 and 1.35 (3H each, s, Me-14 and Me-15), 0.96 and 0.88 (3H each, d, J = 6.5 Hz, Me-12 and Me-13); ¹³C nmr see Table 1; m/z (%) [M]⁺ 294 (4), 279 (7), 234 (7), 219 (10), 191 (20), 165 (10), 149 (9), 137 (100), 98 (31), 81 (51). Found C 69.5, H 9.1; C₁₇H₂₆O₄ requires C 69.36, H 8.90%.

6β-ACETOXY-4β-HYDROXYEUDESM-2-EN-1-ONE [7].—[α]D + 17° (c = 0.5, CHCl₃); ir ν max cm⁻¹ 3442, 1735, 1677, 1248; ¹H nmr (δ) 6.55 (1H, d, J = 10.5 Hz, H-3), 5.89 (1H, d, J = 10.5 Hz, H-2), 5.86 (1H, m, W $\frac{1}{2} = 4$ Hz, H-6), 2.10 (3H, s, AcO group), 1.61 and 1.50 (3H each, s, Me-14 and Me-15), 0.99 and 0.97 (3H each, d, J = 6.5 Hz, Me-12 and Me-13); ¹³C nmr see Table 1; m/z (%) [M]⁺ 294 (2), 279 (5), 234 (4), 219 (6), 191 (16), 163 (10), 149 (12), 137 (71), 98 (40), 81 (100). Found C 69.2, H 9.0; C₁₇H₂₆O₄ requires C 69.36, H 8.90%.

Carbon	Compound							
	1	3	4	· 5	6	7	8	9
C-1	76.81 32.14 121.33 133.49 50.76 71.23 49.16 20.42	213.55 31.61 120.01 134.31 48.95 72.15 49.26 19.97	214.55 32.73 33.80 142.77 50.81 71.23 49.63 20.24	74.56 31.75 119.23 133.77 43.97 71.60 49.33 20.65	195.37 154.94 125.20 70.42 54.11 69.40 49.63 20.59	207.50 150.97 125.53 69.25 49.92 69.51 49.34 20.83	75.85 29.41 30.82 146.60 46.08 71.83 50.06 20.52	78.61 68.29 39.86 143.85 45.05 71.38 49.97 20.09
C-9	35.56 37.86 28.74 20.68 ^a 20.22 ^a 11.90 21.46 22.03 170.18	38.43 47.02 28.54 20.47 ^a 20.23 ^a 18.49 21.55 22.03 170.02	37.66 48.39 28.26 20.39 ^a 20.31 ^a 21.44 110.59 21.81 170.53	33.85 37.58 28.80 21.02 ^a 20.28 ^a 19.30 21.53 22.05 170.19	35.82 28.51 20.82 ^a 20.49 ^a 21.61 23.83 21.85 171.27	34.06 44.50 29.29 21.10 ^a 20.71 ^a 21.55 28.88 21.71	33.95 40.27 28.30 20.73 ^a 20.47 ^a 21.53 107.40 21.93 170.78	33.94 39.50 28.30 20.50 ^a 20.04 ^a 21.49 109.44 21.89 170.73

TABLE 1. ¹³C-nmr Chemical Shifts (δ) of Compounds 1, 3, 4, 5, 6, 7, 8, and 9.

*Values in the same column may be interchanged.

BIOTRANSFORMATION OF SUBSTRATE 4.—Substrate 4 (170 mg) was dissolved in EtOH (3 ml), distributed among 6 Erlenmeyer flask cultures, and incubated for 7 days, after which the cultures were processed as indicated above for biotransformation of substrate 3, to give a mixture (88 mg) which was chromatographed on a Si gel column to obtain 20 mg of starting material 4, 51 mg of metabolite 8 [6β-acetoxyeudesm-4(15)-en-1α-ol] and 17 mg of metabolite 9 [6β-acetoxyeudesm-4(15)-ene-1α,2α-diol] (Scheme 2).

6β-ACETOXYEUDESM-4(15)-EN-1α-OL [8].—[α]D +67° (c = 1, CHCl₃); ir ν max cm⁻¹ 3446, 1732, 1643, 1241; ¹H nmr (δ) 5.63 (1H, m, W¹/₂ = 4 Hz, H-6), 4.74 and 4.56 (1H each, s, H₂-15), 3.35 (1H, m, W¹/₂ = 7 Hz, H-1), 2.43 (1H, br s, H-5), 2.02 (3H, s, AcO group), 0.92 (3H, s, Me-14), 0.85 and 0.99 (3H each, d, J = 6.5 Hz, Me-12 and Me-13); ¹³C nmr see Table 1; m/z (%) [M - 60]⁺ 220 (6), 202 (55), 187 (14), 159 (100), 145 (12), 131 (14), 117 (31), 105 (25), 91 (39). Found C 72.8, H 10.1; C₁₇H₂₈O₃ requires C 72.82, H 10.06%.

6β-ACETOXYEUDESM-4(15)-EN-1α, 2α-DIOL [9]. ---[α]D +24° (c = 1, CHCl₃); ir ν max cm⁻¹ 3430, 1730, 1646, 1235; ¹H nmr (δ) 5.66 (1H, m, W¹/₂ = 4 Hz, H-6), 4.82 and 4.65 (1H each, s, H₂-15), 3.93 (1H, ddd, $J_{2,3}$ = 8.6, $J_{1,2}$ = 2.9 Hz, H-2), 3.32 (1H, d, J = 2.9 Hz, H-1), 2.40 (1H, br s, H-5), 2.02 (3H, s, AcO group), 0.91 (3H, s, Me-14), 0.99 and 0.85 (3H each, d, J = 6.5 Hz, Me-12 and Me-13); ¹³C nmr see Table 1; m/z (%) [M]⁺ 296 (1), 278 (1), 236 (6), 218 (39), 203 (15), 175 (38), 157 (100), 119 (13), 91 (16). Found C 69.1, H 9.5; C₁₇H₂₈O₄ requires C 68.89, H 9.52%.

EPOXIDATION OF SUBSTRATE 3.—Substrate 3 (20 mg) was dissolved in $CHCl_3$ (2 ml) and epoxidized with MCPBA (50 mg) at room temperature for 48 h. After cc a compound (16 mg, 82%) identical to metabolite 6 was isolated.

RESULTS AND DISCUSSION

 6β -Acetoxyeudesm-3-en-1 β -ol [1] (8) was incubated with *C. lunata* for 7 days, after which the substrate 1 was recovered more or less unaltered. Substrate 1 is not very stable; thus incubating it for more than 7 days is not very practical. Its *exo*-isomer 2 affords the same problem, and it was given the same treatment. We have described elsewhere (1) the incubation of 6β -acetoxyeudesma-1 β , 4β -diol with *C. lunata* which after 12 days produces 12- and 13-hydroxyl derivatives. It is possible that substrates 1 and 2 might be biotransformed during such a period of incubation. Nevertheless, their instability makes such a process infeasible.

We have observed that deoxyvulgarine [10] is readily biotransformed by *Rhizopus* nigricans and Aspergillus ochraceous while vulgarine [11] remains unaffected. For this reason we have oxidized the hydroxyl group at C-1 of substrates 1 and 2 to give products 3 and 4, respectively [see Experimental and Arias et al. (2)]. Ketone 3 is structurally similar in ring A to deoxyvulgarine [10].

Incubation of substrate **3** with *C. lunata* for 3 days gave the metabolites **5** (21%), **6** (10%), and **7** (10%). Recovery of the unaltered substrate **3** was 28%. The main metabolite **5** isolated from this incubation resulted from reduction of the ketone group presumably from the β face, which is difficult to access by chemical means. The *S* configuration at C-1 could easily be deduced from the signal in the ¹H-nmr spectrum (δ 3.27, 1H, br d, J = 3.7 Hz). Furthermore, the reduction at C-1 and the configuration of the new hydroxyl group could also be confirmed by a comparison of the ¹³C-nmr spectra of compound **1** and metabolite **5** (Table 1), in which the γ -syn effect is observed for C-5 in metabolite **5** ($\Delta \delta = -6.79$). We have also observed a similar reduction of the keto group at C-1 of deoxyvulgarin [**10**] by *A. ochraceous* (2). In addition *C. lunata* transformed substrate **3** to the Δ^2 -4 α -hydroxyl **6** and the Δ^2 -4 β -hydroxyl **7** derivatives.

Some nOe experiments were performed to determine the configuration at C-4 of metabolites 6 and 7. Irradiation of the signal for H-6 in metabolite 7 produced a considerable nOe on Me-15 (ca. 10%), on H-5 (ca. 12%), and on one of the two methyl groups of the isopropyl moiety. However, irradiation at the H-6 signal metabolite 6 produced no nOe at Me-15.

SCHEME 1. Microbial transformation of substrate 3 by Curvularia lunata and chemical correlation of metabolite 6. a, Pyridinium dichromate; b, C. lunata (3 days); c, MCPBA.

We have previously shown (2) that when A. ochraceous transforms deoxyvulgarin [10] an α -epoxide is produced, which evolves into the Δ^2 -4 α -hydroxyl derivative. When substrate **3** was epoxidized with MCPBA, only metabolite **6** was obtained. In all probability C. lunata epoxidizes both faces of the double bond of substrate **3** to give both 4-hydroxyl epimer metabolites **6** and **7**.

SCHEME 2. Microbial transformation of substrate 4 by *Curvularia lunata*. a, Pyridinium dichromate; b, *C. lunata* (7 days).

After incubating the more stable substrate 4 with *C. lunata* for 7 days, 12% of the substrate was recovered. The principal metabolite produced was the 1 α -hydroxyl derivative 8 (30%), which is also an *S* alcohol. Another metabolite, 9 (10%), isolated from this incubation had two new hydroxyl groups at secondary carbons (ms, ¹H and ¹³C nmr). Double-resonance ¹H-nmr experiments confirmed that both carbinol methine protons were vicinal. Thus, the new hydroxyl group must be situated at C-2. We also performed nOe difference experiments to determine the configuration at C-2. Irradiation of the proton at C-2 (δ 3.93) produced a clear nOe on Me-14 (ca. 5%). Hence, this proton at C-2 (geminal to the hydroxyl group) must have a β configuration.

We may conclude that as with A. ochraceous and R. nigricans (2), C. lunata reduces the keto group at C-1 to give alcohols with an S configuration (10). Moreover, the incubation of deoxyvulgarin [10] with R. nigricans produces a 1 β -acyloin 12, for the synthesis of which we have postulated an α -hydroxylation (2) at C-2 to produce an intermediate acyloin, which evolves into the final acyloin via a Marker-Lawson rearrangement. We believe that the α hydroxylation at C-2 discussed in this paper occurs in a similar way, but that in this case a previous reduction of the hydroxyl group at C-1 of substrate 4 occurs. Thus, a keto group at C-1 and a double bond in ring A seem to direct biotransformations towards ring A (2). On the other hand, when the substrate does not contain a double bond in ring A biotransformation by these fungi is directed towards the isopropyl group of the eudesmanes. Presently, we are engaged in a wider series of biotransformation experiments to confirm this structure-activity relationship.

ACKNOWLEDGMENTS

This work was supported by a grant from the Comisión Asesora de Investigación Científica y Técnica to "Servicio de Análisis y Determinación de Estructuras" and "Servicio de Traducción" (Servicios Técnicos, Universidad de Granada, Spain).

LITERATURE CITED

- 1. J.M. Arias, A. García-Granados, A. Martínez, M.E. Onorato, and F. Rivas, *Tetrabedron Lett.*, **29**, 4471 (1988).
- J.M. Arias, J.L. Bretón, J.A. Gavin, A. García-Granados, A. Martínez, and M.E. Onorato, J. Chem. Soc., Perkin Trans. 1, 471 (1987).
- 3. A. García-Granados, M.E. Onorato, A. Saenz de Buruaga, and J.M. Arias, An. Quim., Ser. C., 78C, 287 (1982).
- 4. A. García-Granados, A. Martínez, M.E. Onorato, and J.M. Arias, J. Nat. Prod., 47, 59 (1984).
- 5. A. García-Granados, A. Martínez, M.E. Onorato, and J.M. Arias, J. Nat. Prod., 48, 371 (1985).
- 6. A. García-Granados, A. Martínez, M.E. Onorato, and J.M. Arias, J. Nat. Prod., 49, 126 (1986).
- J.M. Arias, A. García-Granados, M.B. Jiménez, A. Martínez, F. Rivas, and M.E. Onorato, J. Chem. Res., Synop., 277 (1988); J. Chem. Res., Miniprint, 2064 (1988).
- A. García-Granados, A. Molina, A. Saenz de Buruaga, and J.M. Saenz de Buruaga, *Phytochemistry*, 24, 97 (1985).
- 9. G. Cainelli, G. Gordillo, M. Orena, and S. Sandro, J. Am. Chem. Soc., 98, 6737 (1976).
- 10. C.J. Sih and J.P. Rosazza, in: "Applications of Biochemicals Systems in Organic Chemistry." Ed. by J.B. Jones, C.F. Sih, and D. Perlman, Chap. 3, Wiley, New York, 1976, Part 1.

Received 6 October 1989